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Mobile CrowdSensing (MCS)

 Recruit users to collect various urban data

… …

Air Quality Sensing Traffic Monitoring

Noise Monitoring
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Sparse Mobile CrowdSensing

• MCS: a large number of users
• Sparse MCS: sense a few subareas and infer the rest ones
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Sparse Mobile CrowdSensing

 Sparse MCS provides an effective way for urban sensing

 Infer full map from sparse data

 Data inference

• Compressive Sensing

• Matrix Completion

 Subarea selection

• Active Learning

• Reinforcement Learning
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Sparse Mobile CrowdSensing

 In some cases, 

More interested in predicting the future full map 
Rather than inferring the current data

 For example,

Traffic congestion or parking capacity monitoring

Users still need some time to drive there

Current data are not very important
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Urban Prediction via Sparse MCS

 Infer the current  predict the future
 Based on the sparse sensed data

 Two challenges:

How to utilize the sparse sensed data 
 Complete the matrix 

 Preserve the temporal-spatial correlations

How to capture the temporal-spatial correlations 
 Non-linear temporal relationships (among different cycles)

 Pairwise spatial correlations (between two subareas)
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Problem Formulation

 Problem [Urban Prediction via Sparse MCS]:

 Given a MCS task with 𝑚𝑚 subareas and 𝑛𝑛 sensing cycles

 for each cycle, sense data from a few subareas

 predict the full maps of 𝑘𝑘 future cycles

 Goal: minimizing the prediction errors
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Running example

 An example of urban prediction via Sparse MCS
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Matrix Factorization

 Sensing data exhibit strong temporal-spatial correlations 

 Sensing matrix 𝑌𝑌 usually has the low-rank property

 Given 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝑌𝑌) = 𝑘𝑘, we factor the inferred matrix �𝑌𝑌 into 

 a spatial factor matrix 𝐿𝐿𝑚𝑚×𝑘𝑘 and a temporal factor matrix 𝑅𝑅𝑛𝑛×𝑘𝑘
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Temporal-Spatial Matrix Factorization

 Temporal and spatial constraint matrices,     and

• Important and naturally occurring correlations

• Help data inference and preserve the correlations

 constraints that two continuously sensed data from the 

same subarea are usually similar

 constraints that the data sensed from the closer subareas 

usually have the similar values.
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Graph-based Matrix Completion

 1. With 𝐿𝐿𝑚𝑚×𝑘𝑘 and 𝑅𝑅(𝑛𝑛−1)×𝑘𝑘, calculate the new 𝑟𝑟𝑛𝑛

 2. Iteratively train and update the factor 𝐿𝐿 and 𝑅𝑅
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Urban Prediction

 Continuous Conditional Random Field (CCRF)

1. relationships between the input and output data

 Temporal relationships among different sensing cycles

 Long Short-Term Memory (LSTM)

2. correlations among the output data

 Spatial correlations between different subareas

 Stacked Denoising Auto-Encoder (SDAE)
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Urban Prediction

 CCRF

1. LSTM for Temporal Relationships

2. SDAE for Spatial Correlations

1. Preliminary estimations
by LSTM
2. Constrain and smooth 
by SDAE
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Three real-world data sets

 Sensor-Scope[1], U-Air [2], and TaxiSpeed [3]

 Five typical urban sensing tasks:

 Temperature, Humidity, PM2.5, PM10, and Traffic speed

Collected by static sensors

 Can use mobile devices to collect the same data

[1] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and M. Parlange, 
“Sensorscope:application-specific sensor network for environmental monitoring,” ACM Transactions on 
Sensor Networks, vol. 6, no. 2, pp. 1–32, 2010.
[2] Y. Zheng, F. Liu, and H. P. Hsieh, “U-air:when urban air quality inference meets big data,” in ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, pp. 1436–1444.
[3] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, “Inferring gas consumption and pollution emission of 
vehicles throughout a city,” in ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2014, pp. 1027–1036.
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Evaluation Results

 Temperature: 

1) Inference accuracy; 2) Number of sensed subareas
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Evaluation Results

 3) Sensed ratio; 4) Next cycles; 5) Running time
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Conclusion

 Urban Prediction via Sparse Moblie CrowdSensing

 Predict the future full map from sparse sensed data

 Matrix Completion with Temporal-Spatial constraints

 Preserve temporal-spatial correlations

 Urban Prediction by Continuous Conditional Random Field

 LSTM and SDAE for temporal and spatial correlations

 Extensive Evaluation

 Three real-world data sets with five typical urban sensing tasks
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Thank you!
Q&A
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